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Abstract

Background: With the rapid development of deep sequencing techniques in the recent years, enhancers have
been systematically identified in such projects as FANTOM and ENCODE, forming genome-wide landscapes in
a series of human cell lines. Nevertheless, experimental approaches are still costly and time consuming for large scale
identification of enhancers across a variety of tissues under different disease status, making computational identification
of enhancers indispensable.

Results: To facilitate the identification of enhancers, we propose a computational framework, named DeepEnhancer,
to distinguish enhancers from background genomic sequences. Our method purely relies on DNA sequences
to predict enhancers in an end-to-end manner by using a deep convolutional neural network (CNN). We train
our deep learning model on permissive enhancers and then adopt a transfer learning strategy to fine-tune
the model on enhancers specific to a cell line. Results demonstrate the effectiveness and efficiency of our
method in the classification of enhancers against random sequences, exhibiting advantages of deep learning
over traditional sequence-based classifiers. We then construct a variety of neural networks with different architectures
and show the usefulness of such techniques as max-pooling and batch normalization in our method. To gain the
interpretability of our approach, we further visualize convolutional kernels as sequence logos and successfully identify
similar motifs in the JASPAR database.

Conclusions: DeepEnhancer enables the identification of novel enhancers using only DNA sequences via a highly
accurate deep learning model. The proposed computational framework can also be applied to similar problems,
thereby prompting the use of machine learning methods in life sciences.
Background
Enhancers are short DNA sequences that can be bound
by transcription factors to boost the expression of their
target genes. Recent advances in the study of gene regu-
latory mechanisms have suggested that enhancers are
typically 50-1500 bp long, located either upstream or
downstream from the transcription start site of their tar-
get genes. Besides, enhancers are believed to cooperate
with promoters to regulate the transcription of genes in
a cis-acting and tissue specific manner, making these
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short sequences crucial in the understanding of gene
regulatory mechanisms, and thus receiving more and
more attentions in not only genomic and epigenomic
studies but also the deciphering of genetic basis of
human inherited diseases [1–3].
The identification of enhancers is usually done by

using high-throughput sequencing techniques. For ex-
ample, Heintzman and Ren used ChIP-seq experiments
to establish a landscape of binding sites for individual
transcription factor [4]. However, it is not practical to
identify all enhancers using this approach because the
knowledge of a subset of transcription factors that oc-
cupy active enhancer regions in a specific cell line must
be known a prior. May et al. mapped the binding sites of
transcriptional coactivators such as EP300 and CBP that
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are recruited by sequence-specific transcription factors
to a large number of enhancers [5]. Nevertheless, it is
known that not all enhancers are marked by a given set
of co-activators, and thus systematic identification of en-
hancers using this approach is not feasible. Recent ad-
vances in epigenomics also suggest the approach of
identifying enhancers relying on chromatin accessibility,
usually resorting to such innovative techniques as
DNase-seq [6]. However, this approach is not specific to
enhancers because accessible chromatin regions may
also correspond to promoters, silencers, repressors, insu-
lators, and other functional elements. With the recogni-
tion that active promoters are marked by trimethylation
of Lys4 of histone H3 (i.e., H3K4me3), whereas en-
hancers are marked by monomethylation instead of tri-
methylation of H3K4 (i.e., H3K4me1) [7], genome-wide
identification of enhancers have been conducted in
large-scale projects such as ENCODE (Encyclopedia of
DNA Elements) and Roadmap [8]. Besides, using an ex-
perimental technique called cap analysis of gene expres-
sion (CAGE), the FANTOM project has successfully
mapped promoters and enhancers that are active in a
majority of mammalian primary cell lines [9].
However, experimental approaches are expensive and

time consuming for large scale identification of active
enhancers across a variety of human tissues and cell
lines. In spite of great efforts, the ENCODE and Road-
map projects were only able to carry out histone modifi-
cation experiments in several hundred human cell lines
thus far, still far less than forming a comprehensive land-
scape of enhancers under different disease status and
subsequently preventing the deciphering of gene regula-
tory mechanisms. To address this problem, computa-
tional approaches have been proposed to conduct in
silicon prediction of enhancers by using DNA sequences.
To mention a few, Lee et al. developed a computational
framework called kmer-SVM based on the support vec-
tor machine (SVM) to discriminate mammalian en-
hancers from background sequences [10]. They found
that some predictive k-mer features are enriched in en-
hancers and have potential biological meaning. Ghandi
et al. improved kmer-SVM by adopting another type of
sequence features called gapped k-mers [11]. Their
method, known as gkmSVM, showed robustness in the
estimation of k-mer frequencies and allowed higher per-
formance than kmer-SVM. However, k-mer features,
though unbiased, may lack the ability to capture high
order characteristics of enhancer sequences.
With the rapid development of deep learning since early

2000s, many researchers have tried to apply the state-of-
the-art deep learning method in bioinformatics problems.
For example, Quang et al. annotated the effect of noncod-
ing genetic variants by training a deep neural network
[12]. Their method achieved higher performance than the
traditional machine learning method CADD [13]. In
DeepBind [14], Alipanahi et al. used a deep learning strat-
egy to predict DNA- and RNA-binding proteins from di-
verse experimental data sets. The results showed that
deep learning methods have broad applicability and im-
proved prediction power than traditional classification
methods. Besides, Zhou et al. developed a deep-learning
method, named DeepSEA, that learned a regulatory se-
quence code from large-scale chromatin-profiling data in-
cluding histone modification, TF binding, etc. to predict
effects of noncoding variants [15]. For example, Kelley el
al. proposed a method called Basset that applies deep con-
volutional neural networks to learn functional activities of
DNA sequences from genomics data [16]. All these
methods suggest that deep learning provides a powerful
way to carry out genomics studies, stimulating us to ask
the question of whether enhancers can be identified
merely by sequence information.
Motivated by the above understanding, in this paper,

we propose a method called DeepEnhancer to predict
enhancers using a deep convolutional neural network
(CNN) framework. Specifically, we regard a DNA se-
quence as a special 1-D image with four channels cor-
responding to four types of nucleotides and train a
neural network model to automatically distinguish en-
hancers from background genome sequences in differ-
ent cell lines. Unlike a traditional classifier such as the
support vector machine, our method skips the hand-
crafted feature extraction step. Instead, we use convo-
lutional kernels to scan input short DNA sequence
and automatically obtain low level motif features,
which are then fed to a max pooling layer and eventu-
ally to densely connected neurons to generate high
level complex features through a nonlinear activation
function. To gain interpretability of our method, we
design a visualize strategy that extracts sequence mo-
tifs form kernels in the first convolutional layer. We
evaluate the performance of our method using a large
set of permissive enhancers defined in the FANTOM5
project [9]. Results, quantified by such criteria as the
area under the receiver operation characteristic curve
(AUROC) and that under the precession recall curve
(AUPRC), strongly support the superiority of our
method over traditional classifiers. Taking tissue speci-
ficity of enhancers into consideration, we adopt a
transfer learning strategy to fine-tune our model for 9
datasets of enhancers specific to a variety of cell lines
in the ENCODE project [17]. Corresponding results
also support the high performance of our method. We
expect to see wide applications of our approach to not
only genomic and epigenomic studies for deciphering
gene regulation code, but also human and medical
genetics for understanding functional implications of
genetic variants.
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Results
Overview of DeepEnhancer
As illustrated in Fig. 1, DeepEnhancer, the proposed deep
convolutional neural network model, is composed of mul-
tiple convolutional layers, max-pooling layers, and fully
connected layers. In the first convolutional layer, a number
of convolutional kernels or filters are used to scan along
an input sequence for short sequence patterns. In each of
the subsequent convolutional layers, low level patterns
from the previous layer are further scanned to capture
high level patterns. In each layer, a batch normalization
operation is performed to restrict output values not
exceeding the maximum. In a max-pooling layer, input
patterns are reduced to a low dimension, for the purpose
of alleviating computational burden and facilitating the
extraction of high level features. In a fully connected layer,
input variables are discarded at random by a dropout
operation, fed to a rectified linear unit (ReLU) for incorp-
orating nonlinear flavor, and eventually transformed into
probabilities through a softmax function.
A hallmark of our model is the use of convolutional ker-

nels. Opposed to traditional classification approaches that
are based on elaborately-designed and manually-crafted
features, convolutional kernels perform adaptive learning
for features, analogous to a process of mapping raw input
data to informative representation of the knowledge. In
this sense, the convolutional kernels can be thought of as
a series of motif scanners, since a set of such kernels is
capable of recognizing relevant patterns in the input and
updating themselves during the training procedure.
A deep convolutional neural network typically has a

vast number of parameters. As described in Table 1, in
our model, the input layer is a 4 × 1 × L matrix, where L,
with the default value of 300, is the length of the input
Fig. 1 Overview of DeepEnhancer. A raw DNA sequence is first encoded in
motifs on the input matrix by the convolution operation. Subsequent Max-
reduction and convergence acceleration. Additional convolutional layers w
high-level features. Fully-connected layers with dropout will perform nonlin
softmax layer
sequence. The four types of nucleotides, A, C, G, and T,
are encoded by using the one hot method, forming 4
channels. Therefore, a short sequence of length L can be
thought of as an image of 4 channels with height 1 and
width L. The first convolutional layer contains 128 ker-
nels of shape 1 × 8, with sliding step 1. Right behind the
first convolutional layer is a batch-normalization layer,
which is followed by another convolutional layer with
128 kernels of shape 1 × 8. After a max-pooling layer
with pooling size 1 × 2, there are two other convolu-
tional layers with 64 kernels of shape 1 × 3. Like the first
convolutional layer, each of the four convolutional layers
is followed by a batch-normalization layer. On the top of
the architecture are two fully connected layers of size
256 and 128, respectively, with a dropout layer (ratio
0.5) between them. The final 2-way softmax layer gener-
ates the classification probability results.

DeepEnhancer predicts permissive enhancers
We evaluated our method using a set of 43,011 permis-
sive enhancers obtained from the FANTOM5 project.
For this objective, we labelled sequences of these en-
hancers as positive and sampled from the human refer-
ence genome (GRCh37/hg19) the same number of
sequences as negative, obtaining a dataset for evaluation.
We then carried out a 10-fold cross-validation experi-
ment for each architecture of the neural network using
the evaluation data. Briefly, we partitioned the dataset
into 10 subsets of nearly equal size. In each fold of the ex-
periment, we took 9 subsets to train the CNN model and
tested its performance using the remaining subset. Particu-
larly, in the training phase, we first converted training se-
quences of variable length to short sequences of fixed
length using a pipeline detailed in the data processing
to a binary matrix. Kernels of the first convolutional layer scan for
pooling layer and batch normalization layer are used for dimension
ill model the interaction between motifs in previous layers and obtain
ear transformations and finally predict the response variable through



Table 2 Classification performance for different network
architectures

Model AUROC AUPRC Epoch Time

gkmSVM 0.887 (0.004) 0.899 (0.004) 6 h (total)

4conv2pool 0.910 (0.004) 0.915 (0.004) 272 s

4conv2pool4norm 0.916 (0.004) 0.917 (0.003) 376 s

4conv 0.896 (0.005) 0.897 (0.005) 325 s

6conv3pool 0.898 (0.005) 0.898 (0.006) 251 s

6conv3pool6norm 0.911 (0.006) 0.909 (0.005) 415 s

The conventional gkmSVM is used as the baseline for comparison. For each
model, we carried out 10-fold cross validation experiments. This table records
the mean value of AUC values with standard error behind in the brackets

Table 1 Different network architectures of DeepEnhancer

Layer ID Layer Type Size Output shape

0 Input – 4x1x300

1 Conv 128x4x1x8 128x1x293

2 Batchnorm – 128x1x293

3 Conv 128x128x1x8 128x1x286

4 Batchnorm – 128x1x286

5 Maxpooling 1 × 2 128x1x143

6 Conv 64x128x1x3 64x1x141

7 Batchnorm – 64x1x141

8 Conv 64x64x1x3 64x1x139

9 Batchnorm – 64x1x139

10 Maxpooling 1 × 2 64x1x69

11 Dense 256 256

12 Dropout – 256

13 Dense 128 128

14 Softmax 2 2

The size column records the convolutional kernel size, the max-pooling window
size and the fully connected layer size. The output shape depicts the change of
data’s shape in the flow
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section and then fed the resulting data to the CNN. In the
test phase, we also converted a test region to multiple short
sequences and then assigned the maximum prediction
probability of such short sequences to the test region.
We implemented DeepEnhancer by using a well-known

wrapper called Lasagne [18], which is built on top of
Theano [19, 20]. In the training phase, we resorted to the
recently proposed Adam algorithm [21] for the stochastic
optimization of the objective loss function, with the initial
learning rate setting to 10−4 and the max number of
epochs setting to 30. We also applied the learning rate
decay schedule and the early stopping strategy to acceler-
ate the convergence of training.
We compared the performance of 5 network architec-

tures described in the methods section and the gapped k-
mer support vector machine (gkmSVM) [11], which were
regarded as the state-of-the-art sequence-based model for
predicting regulatory elements. In the comparison, the
performance of a method was evaluated in terms of two
criteria, AUROC (the area under the receiver operating
characteristic curve) and AUPRC (the area under the
precision-recall curve). As shown in Table 2 and Fig. 2, we
found that our deep learning models of different architec-
ture all surpassed the conventional sequence-based
method of gkmSVM. Specifically, the model 4conv2pool4-
norm achieved the highest performance with a mean
AUROC of 0.916 and a mean AUPRC of 0.917. Even the
model with the lowest performance, 4conv, yielded a
slightly higher performance than gkmSVM. We then
carried out pairwise Wilcoxon tests on the AUROC and
AUPRC scores of gkmSVM and the five CNN models. As
shown in Tables 3 and 4, pairwise Wilcox rank-sum tests
also suggest that the model 4conv2pool4norm outper-
forms the gkmSVM baseline, and the results are statisti-
cally significance, suggest the superiority of the deep
learning method over traditionally binary classification ap-
proach. Besides, DeepEnhancer, as a typical deep learning
method, does not require any pre-defined features such as
k-mer counts used by gkmSVM. With convolution
kernels, our method can adaptively learn high-quality fea-
tures from the large-scale dataset and then use them for
accurate classification.
Moreover, the comparison between different architec-

tures of the neural network suggested that the pooling
operation increases the classification performance, since
the model 4conv without pooling layers was obviously
inferior to model 4conv2pool. The pooling operation
helps to abstract features in the previous layer and in-
creases the receptive field, hence it improves representa-
tion power of our method. In addition, we also noted
that the batch normalization strategy used in 4con-
v2pool4norm and 6conv3pool6norm did improve the
performance of a model. Surprisingly, while deeper
models usually achieved better performance, we ob-
served that a model with 6 convolution layers (6conv3-
pool) demonstrated inferior performance when
compared with a model with 4 convolutional layers
(4conv2pool). Similarly, we observed that the model
6conv3pool6norm achieved lower performance than
4conv2pool4norm. We conjectured that more training
data may be necessary in order to train an even deeper
architecture.

DeepEnhancer predicts cell line specific enhancers
It is well known that a hallmark of enhancers is the tis-
sue specificity. Although our model has successfully ex-
hibited the power of distinguishing permissive enhancers
from background random sequences in the above sec-
tion, whether enhancers specific to a tissue or cell line
can also be identified using our model remains a ques-
tion. Directly applying the deep learning model to en-
hancers specific to a tissue may not succeed, because the



Fig. 2 AUROCs of different methods on the permissive enhancer dataset. a: boxplot for AUROC scores. b: boxplot for AUPRC scores. The main
body of the boxplot shows the quartiles. The horizontal lines at the median of each box show the medians. The vertical lines extending to the
most extreme represent non-outlier data points
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number of enhancers known to be specific to a tissue is
in general quite limited, and thus greatly restricts the
complexity of the model. We therefore adopted a trans-
fer learning strategy to borrow models well-trained in
permissive enhancers, for the purpose of reducing the
model complexity. This idea is analogous to a lot of suc-
cessful studies in computer vision, where very few
people train an entire convolutional neural network
from scratch with random parameter initialization, since
it is relatively rare to get a dataset of sufficient size. In-
stead, it is common to use a CNN model pre-trained on
a very large dataset, such as ImageNet, which contains
about 1.2 million images and 1000 categories [22].
With the transfer learning strategy, we first trained a

model (4conv2pool4norm) using the dataset of permissive
enhancers and then fine-tuned the weights of the resulting
model by continuing the back propagation on a dataset of
enhancers specific to a certain cell line. Note that permis-
sive enhancers in FANTOM5 are all experimentally veri-
fied, while enhancers specific to a cell line are predicted
by the ChromHMM model, which may have lower accur-
acy. However, by fine-tuning, we can fuse the trustable
knowledge we distilled from permissive dataset into the
training of the cell line specific models.
Table 3 Pairwise Wilcoxon tests on AUROCs of different methods

gkmSVM 4conv2pool 4conv2po

gkmSVM – 5.1e-3 5.1e-3

4conv2pool – – 4.6e-2

4conv2pool4norm – – –

4conv – – –

6conv3pool – – –

6conv3pool6norm – – –

We perform pairwise Wilcoxon tests on AUROCs of the six methods. Tests are cond
different in their medians. Small p-values indicate that two methods have different
As shown in Table 5, the fine-tuned CNN models un-
expectedly achieves higher performance than gkmSVM
for enhancers specific to 9 different cell lines, say,
GM12878, H1-hESC, HepG2, HMEC, HSMM, HUVEC,
K562, NHEK, and NHLF. Taking GM12878 as an ex-
ample, our model achieves an AUROC of 0.874 and an
AUPRC of 0.875, while gkmSVM only achieves an
AUROC of 0.784 and an AUPRC of 0.819. On average,
our method is superior to gkmSVM by about 7% in both
AUROC and AUPRC scores. We then counted the num-
ber of cell lines that our method achieved a higher
AUROC than gkmSVM and conducted a Binomial exact
test against the alternative hypothesis that the probabil-
ity that our model outperformed gkmSVM is greater
than 0.5. The small p-value (1.9×10−3) supports the sig-
nificance of the test and suggests the superiority of our
method over gkmSVM. A similar test regarding AUPRC
gave us a similar conclusion. Furthermore, receiver oper-
ating characteristic curves for the 9 cell lines, as depicted
in Fig. 3, clearly show that our method produces curves
that climb much faster towards to top-left corner of the
sub-plots, suggesting that our method can achieve rela-
tively high true positive rate at relatively low false posi-
tive rate. Precision-recall curves for individual cell lines,
ol4norm 4conv 6conv3pool 6conv3pool6norm

5.1e-3 5.1e-3 5.1e-3

5.1e-3 5.1e-3 9.6e-1

5.1e-3 5.1e-3 2.8e-2

– 2.4e-1 5.1e-3

– – 6.9e-3

– – –

ucted with the alternative hypothesis that the AUROCs of two methods are
performance



Table 4 Pairwise Wilcoxon tests on AUPRCs of different methods

gkmSVM 4conv2pool 4conv2pool4norm 4conv 6conv3pool 6conv3pool6norm

gkmSVM – 5.1e-3 5.1e-3 6.5e-1 5.8e-1 5.1e-3

4conv2pool – – 2.8e-1 5.1e-3 5.1e-3 5.1e-3

4conv2pool4norm – – – 5.1e-3 5.1e-3 5.1e-2

4conv – – – – 4.4e-1 5.1e-3

6conv3pool – – – – – 9.3e-3

6conv3pool6norm – – – – – –

We perform pairwise Wilcoxon tests on AUPRCs of the six methods. Tests are conducted with the alternative hypothesis that the AUPRCs of two methods are
different in their medians. Small p-values indicate that two methods have different performance
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as shown in Fig. 4, also suggest the superiority of our
method. From these results, we concluded that our deep
learning model is more powerful in modeling genomic
sequences than conventional k-mer based methods.
DeepEnhancer learns sequence motifs
A debate regarding deep learning methods is the weak
interpretability, that is, features used by dense layers of a
convolutional neural network may hard to understand.
To gain the interpretability of our models in the above
two sections, we proposed a strategy to visualize se-
quence motifs recovered by our model as sequence
logos. Briefly, inspired by related studies in computer vi-
sion [23, 24], Lanchatin et al. addressed the sequence
visualization problem by solving an optimization prob-
lem that found the input matrix corresponding to the
highest probability of transcription factor binding sites
via back propagation [25]. However, since we trained the
network on binary matrix input, it seems a little weird
to optimize the input matrix in a continuous space. We
therefore proposed the following strategy to extract and
Table 5 Classification performance for different cell lines

Cell Type AUROC AUPRC

DeepEnhancer gkmSVM DeepEnhancer gkmSVM

GM12878 0.874 0.784 0.875 0.819

H1-hESC 0.923 0.869 0.919 0.861

HepG2 0.882 0.800 0.883 0.827

HMEC 0.903 0.848 0.907 0.892

HSMM 0.904 0.830 0.910 0.856

HUVEC 0.898 0.824 0.905 0.870

K562 0.883 0.794 0.886 0.799

NHEK 0.888 0.809 0.893 0.840

NHLF 0.909 0.848 0.910 0.869

p-value 1.9e-3 1.9e-3

We compare the performance of our DeepEnhancer model and gkmSVM on 9
cell types using two measures: area under receiver operating characteristic
curve (AUROC) and area under precision-recall curve (AUPRC). The last row
shows the p-value result of the binomial exact test, which makes us choose
the alternative hypothesis that DeepEnhancer has a larger AUC score
than gkmSVM
visualize sequence motifs encoded in the first convolu-
tional layer of our model.
Typically, a convolutional neural network model scans

the input sequence s in a window with multiple convo-
lutional kernels or filters with weights W, and then
through an activation function, e.g., a rectified linear
unit (ReLU), with bias b to obtain the output of the first
layer, as

Conv1 sð Þ ¼ ReLU s⊗W þ bð Þ;

where symbol ⊗ means the convolution operation. In-
stead of searching for an input matrix in a continuous
Euclidean space, we sought for all possible input matri-
ces that have positive activation values through the first
convolutional layer, and then aggregated them into a
positive weight matrix (PWM) which is used to repre-
sent a motif. In detail, since our learned parameter W is
in shape (128 × 4 × 1 × 8), it can be converted into 128
weight filters wi in shape (4 × 8). For each weight filter
wi, we found all possible one-hot encoded input matri-
ces s in shape (4 × 8) with positive convolutional activa-
tions, which represent motifs our model can identify.
Note that our convolutional filter has width 8, the search
space is limited to only 4,8 so traversal search operation
can be fairly feasible. After we collected the PWMs for
all the 128 weight filters, we evaluated our motifs by per-
forming comparison against JASPAR motifs [26], which
are widely known as the gold standard representations
of positive binding sites for hundreds of transcription
factors. In order to compute the similarity of our motifs,
we used a tool called TOMTOM with predefined statis-
tical measure of motif-motif similarity [27, 28]. TOM-
TOM compared a group of motifs in length 8 against
motifs in JASPAR dataset whose lengths range in (5, 30)
and produced an alignment for each significant match.
In practice, for each cell line, we compared the

motifs transformed by the first convolutional layer of
our model against the Vertebrates (in vivo and in
silico) motif database using TOMTOM, and set the
significance threshold E-value <0.1. Results, as shown
in Fig. 5, demonstrate that many of our learned



Fig. 3 ROC curves for enhancers specific to different cell lines. The first nine subplots depict the receiver operating characteristic (ROC) curves,
and the last subplot is the barplot of the AUROC

Fig. 4 PR curves for enhancers specific to different cell lines. The first nine subplots depict the precision-recall (PR) curves for the 9 cell
types respectively, and the last subplot is the barplot for AUPRC
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Fig. 6 Loss of the model 4conv2pool4norm during training. The loss
of the training set decreases rapidly, and we hold out a validation set
for early stopping after 8 epochs of unimproved valid loss
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motifs have significant similarity to the biologically
known motifs. For example, the nuclear factor κB
(NF-κB) has been detected in numerous cell types
that express cytokines, chemokines, growth factors,
cell adhesion molecules, and some acute phase pro-
teins in health and in various disease states. In a re-
cent study, Zhao et al. found that NF-κB are enriched
at active enhancers, as characterized by H3K4me1
and H3K27ac marks by using validated GM12878
chromatin state annotations based on histone modifi-
cations [29], suggesting the prevalence of NF-κB mo-
tifs in enhancers specific to the GM12878 cell type.
Interestingly, according to our visualization results
(Fig. 6), we find the presence of a learned pattern
which is very similar to the NF-κB motif in the
GM12878 cell type, coinciding with the finding of
Zhao et al. and revealing the power of our DeepEn-
hancer method in extracting sequence features. How-
ever, note that not all of learned motifs are precisely
consistent with known motif databases. On one hand,
the accuracy of learned motifs depends on the train-
ing dataset. On the other hand, our computational
framework may uncover new motifs not experimen-
tally verified yet.
Fig. 5 Visualization of learned motifs. For each cell line, we show a pattern
JASPAR database
DeepEnhancer is efficient in computation time
It may be argued that the vast number of parameters in
a deep convolutional neural network may greatly in-
crease the computational burden. Nevertheless, in prac-
tical, with the use of high-performance NVIDIA Tesla
learned by our model and can be matched to a known motif in the
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K80 GPU, our DeepEnhancer model also gained super-
iority in the running-time over gkmSVM. Taking the
4conv2pool4norm model as an example, each training
epoch costed about 376 s (Table 2), and we stopped
model training at 18 epochs (Fig. 6) according to the
early stopping strategy. Hence our model training totally
consumed only less than 2 h. In contrast, gkmSVM took
about 6 h on average until convergence. Hence, with the
aid of computer hardware, our approach can allow re-
searchers to train highly accurate deep models within
quite a short time. Considering the vast amount of po-
tential regulatory elements in the whole genome, this
characteristic is particular useful when applying our
model to study other types of regulatory elements.

Discussion
The superiority of our method over traditional classification
approach such as gkmSVM may be mainly attributed to
the use of the deep convolutional neural network model,
which discards the hand-crafted feature extraction strategy
and is capable of exploring much more sequence properties
that contributes to the final classification task. This end-to-
end learning strategy, with the support of the vast amount
of genomic big data and the rapid growing computing
power, opens a door to large scale deciphering of sequence
code and will eventually benefit a wide range of biological
and medical studies [30–32]. Nevertheless, our study also
emphasizes the importance of several techniques that are
crucial to the success of a deep learning approach in gen-
omic studies. For example, data augmentation seems indis-
pensable, given the fact that the sample size in a biological
experiment is typically small. Transfer learning, which can
be thought of as a strategy for incorporating knowledge
from closely related data, seems beneficial, especially when
intrinsic properties of the data are consistent.
Our method has a wide range of applications in a

variety of scenarios. First, our method can be used with
such high-throughput sequencing techniques as ChIP-
seq to improve the accuracy of identifying enhancers.
Of particular interest is the incorporation of genome-
wide assay for chromatin accessibility. Such experimen-
tal techniques, with examples including DNase-seq,
MNase-seq, ATAC-seq, have being provided abundant
data for not only studies of fundamental biological
questions, but also applications to medical genetics and
precision medicine. Second, our method can be used to
determine deleterious SNPs in enhancers. Since our
model can score the activity of an enhancer, it is natural
to use our model to predict the impact of regulatory
variants from sequence information.
Our model can certainly be improved in some aspects.

First, convolutional neural networks are not suitable in
dealing with sequences of variable length. Recent studies
in recurrent neural networks have exhibited the success of
the long short-term memory (LSTM) network, which is
capable of handling sequential inputs of variable length
and long-term dependencies. The incorporation of LSTM
layers into our framework hence is natural and may pro-
duce even higher performance, since interactions of very
long range in a sequence can be reasonably captured.
Second, our model can be extended to incorporate

genomic information other than individual nucleotides.
For example, we can alter the one-hot representation of
A, C, G, T by adding information such as the multiple
sequence alignment. From another perspective, we may
also pre-train a vector representation of k-mers using
unsupervised learning, such as GloVe [33], by investigat-
ing the co-occurrence matrix of k-mers, and use them to
represent a DNA sequence. In this way, we can fuse the
global genome information in representation of a local
DNA sequence [34].

Conclusions
We have proposed DeepEnhancer, a deep convolutional
neural network framework, to distinguish enhancers
from background sequences. Using FANTOM5 and EN-
CODE enhancer datasets with proper data preprocessing
procedure, we trained several models with a variety of
architectures and compared the classification per-
formance with a traditional sequence-based method
gkmSVM. We observed that our method surpassed the
traditional approach in both effectiveness and efficiency.
Besides, the use of max pooling and batch normalization
can help improve the performance, while deeper models
do not guarantee a better classification accuracy. Our
model consistently outperformed gkmSVM for not only
permissive enhancers but also enhancers specific individ-
ual cell lines, reflecting strong power of deep learning in
capturing sophisticated features. To further promote the
interpretability of our model, we transformed convolu-
tional kernels in the first layer into position weighted
matrices and then used a tool called TOMTOM to com-
pare our PWMs against the JASPAR motif datasets. We
found that our model can automatically learn meaning-
ful motifs. Eventually, with the explosive growth of func-
tional genomics data, we expect that such deep learning
approaches will be broadly applicable and provide us
highly accurate models.

Methods
Data sources
We collected two sets of enhancers from the FANTOM5
and ENCODE projects. Briefly, the FANTOM5 project
systematically investigates how the genome encodes the
diversity of cell lines that make up a human being. With
an experimental technique called CAGE (cap analysis of
gene expression), FANTOM maps transcripts, transcrip-
tion factors, promoters and enhancers that are active in
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a majority of mammalian primary cell lines [9, 35]. The
FANTOM project has published a package called pro-
moter enhancer slider selector tool (PrESSTo) for users
to select enhancers and promoters based on specific tis-
sues and cell lines [36]. Using this tool, we obtain a total
of 43,011 permissive enhancers. On the other hand, the
ENCODE project provides tissue specific enhancers for
9 cell lines, including GM12878, H1-hESC, HepG2,
HMEC, HSMM, HUVEC, K562, NHEK, and NHLF. We
construct negative datasets by sample at random an
equal number of background genome sequences. Here,
we define the background genome as the entire human
reference genome, excluding known enhancers, pro-
moters for coding and noncoding genes, and exonic
regions for coding and non-coding genes.
Data augmentation
We consider two issues when implementing the deep
neural network model. First, a convolutional layer only
accepts sequences of fixed length as input, while en-
hancers in the FANTOM5 permissive dataset are of vari-
able length. Second, a deep neural network requires a
vast amount of training samples. We then propose a
data augmentation strategy as illustrated in Fig. 7 to ad-
dress both issues. Suppose sequences of length W (de-
fault to 300) are desired. In the case that an enhancer is
shorter than W, we slid a window of size W along the
genome with stride s (default 2) around the input se-
quence, and take every sequence overlapping with the
original one to obtain augmented sequences. In the case
that an enhancer is longer than L, we slide a window of
Fig. 7 Diagram of data augmentation. Suppose the model accepts sequen
than W, we slide a window of size W along the genome with stride s (default
with the original one to obtain augmented sequences. b In the case that an
sequence with stride s (default 2) to obtain a number of sequences, each of l
size W along the input sequence with stride s (default 2)
to obtain a number of sequences, each of length W.
With the above data augmentation strategy, we con-

vert input sequences of variable length to short se-
quences of fixed length, at the same time greatly
increased the number of available training sequences,
i.e., completed the data augmentation procedure. We
control the data augmentation ratio in a determinant
way by changing the stride value. With the default value
of 2, the number of permissive enhancers increases from
43,011 to about 1 million. In the training phrase, se-
quences augmented from enhancer regions are labeled
as positive, and those from background regions are la-
beled as negative. In the test phase, we adopt a voting
strategy to predict the probability that a sequence is an
enhancer. Briefly, we use a trained model to score all
sequences sampled from the original one, and we assign
the maximum prediction probability to the original in-
put sequence. The underlying principle is that we most
care about whether part of the input sequence overlaps
with a putative enhancer. If this is the case, there should
exist some transcription factor binding sites (TFBS) or
motif elements in the input sequence.

Convolutional neural networks
Recent advances in computational biology have demon-
strated successful applications of convolutional neural
networks to the analysis of DNA sequences [37]. Typic-
ally, a convolutional layer, as the most crucial part in
such a network, is composed of multiple convolutional
kernels with equal size and is used to scan along the in-
put DNA sequence for short patterns, in a manner
ces of length W bps as input. a In the case that an enhancer is shorter
2) around the input sequence, and take every sequence overlapping
enhancer is longer than W, we slide a window of size W along the input
ength W
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analogous to a sliding window. A max-pooling layer,
which often follows a convolutional layer, takes output
of the preceded convolutional layer as input, and pro-
duces a maximal value as output. Such a pooling process
is usually used to reduce the number of parameters to
be learned and help to abstract features learned in the
previous layers. An activation function is usually used
after each layer to guarantee the nonlinearity of the
whole model. A widely used activation function is the
rectified linear unit (ReLU), defined as

ReLU xð Þ ¼ max 0; xð Þ:
In recent years, the batch-normalization layer has be-

come popular [38], due to such benefit as the reduction
of the internal covariate shift and the acceleration of the
training procedure. On the top of the architecture are
usually several fully connected layers, or dense layers,
and a softmax layer playing the role of a nonlinear clas-
sifier based on the learned high level feature representa-
tion. The softmax function is a common used classifier
in deep learning, which is a generalization of logistic re-
gression classifier to multiple cases, as the following
equation:

f i zð Þ ¼ ezi
P

je
zj
;

where fi(z) denotes the predicted score for class i. A
dropout layer is used between fully connected layers,
and it randomly sets input values to zero to avoid over-
fitting [39]. The objective function to be optimized for a
classification network is often the cross entropy loss, de-
fined as the entropy between a true distribution p and
the estimated class probabilities q, as

H p; qð Þ ¼ −
X

x
p xð Þ logq xð Þ;

Network architectures
We vary the architecture of the neutral network to investi-
gate how different architectures affect the performance of
a network. Seeking for the simplicity, we denote the de-
fault architecture in Table 1 as 4conv2pool4norm, which
means the network has 4 convolutional layers, 2 max-
pooling layers and 4 batch normalization layers. We use
the same naming rule for the other architectures.
Dropping the batch-normalization layers, we obtain a

variant architecture named 4conv2pool, for the purpose
of exploring the effect of the batch normalization. We
continue to throw away the max-pooling layers of
4conv2pool and obtain a variant architecture named
4conv for studying the influence of the max-pooling
layers. To explore the impact of the network depth, we
append 2 additional convolutional layers with 16 kernels
of size 1 × 2 to make the CNN deeper, resulting another
two variants 6conv3pool6norm and 6conv3pool. As
such, we have a total of 5 different network architectures
to be compared in our experiments.
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